Exploring the mechanism of biocatalyst inhibition in microbial desulfurization.
نویسندگان
چکیده
Microbial desulfurization, or biodesulfurization (BDS), of fuels is a promising technology because it can desulfurize compounds that are recalcitrant to the current standard technology in the oil industry. One of the obstacles to the commercialization of BDS is the reduction in biocatalyst activity concomitant with the accumulation of the end product, 2-hydroxybiphenyl (HBP), during the process. BDS experiments were performed by incubating Rhodococcus erythropolis IGTS8 resting-cell suspensions with hexadecane at 0.50 (vol/vol) containing 10 mM dibenzothiophene. The resin Dowex Optipore SD-2 was added to the BDS experiments at resin concentrations of 0, 10, or 50 g resin/liter total volume. The HBP concentration within the cytoplasm was estimated to decrease from 1,100 to 260 μM with increasing resin concentration. Despite this finding, productivity did not increase with the resin concentration. This led us to focus on the susceptibility of the desulfurization enzymes toward HBP. Dose-response experiments were performed to identify major inhibitory interactions in the most common BDS pathway, the 4S pathway. HBP was responsible for three of the four major inhibitory interactions identified. The concentrations of HBP that led to a 50% reduction in the enzymes' activities (IC50s) for DszA, DszB, and DszC were measured to be 60 ± 5 μM, 110 ± 10 μM, and 50 ± 5 μM, respectively. The fact that the IC50s for HBP are all significantly lower than the cytoplasmic HBP concentration suggests that the inhibition of the desulfurization enzymes by HBP is responsible for the observed reduction in biocatalyst activity concomitant with HBP generation.
منابع مشابه
Composite nanolayer photocatalyst-biocatalyst Rhodococcus erythropolis R1 for desulfurization of dibenzothiophene
A nanolayer of composite and Rhodococcus erythropolis biocatalyst was studied for the first time for desulfurization of dibenzothiophene as a model sulfur compound and its performance was compared with that of composite and R. erythropolis alone. The nanolayer of composite was synthesized by sol-gel method from ferrous oxalate and zinc oxalate precursors coated on glass by spin coating techniqu...
متن کاملRate-limiting step analysis of the microbial desulfurization of dibenzothiophene in a model oil system.
A mechanistic analysis of the various mass transport and kinetic steps in the microbial desulfurization of dibenzothiophene (DBT) by Rhodococcus erythropolis IGTS8 in a model biphasic (oil-water), small-scale system was performed. The biocatalyst was distributed into three populations, free cells in the aqueous phase, cell aggregates and oil-adhered cells, and the fraction of cells in each popu...
متن کاملMixtures of Pseudomonas putida CECT 5279 cells of different ages: Optimization as biodesulfurization catalyst
Sulfur content in fossil fuels is known to be the most important anthropogenic cause of sulfur oxide emissions to the atmosphere. In order to avoid health, environmental and technical problems caused by this compound, legislation imposes restrictive limitations to fuel sulfur content. Biodesulfurization (BDS) can become a complementary technology to hydrodesulfurization (HDS) to face this situa...
متن کاملMicrobial Desulfurization of Malaysian Coal in Batch Process using Mixed Culture (RESEARCH NOTE)
Biodesulfurization of coal has been carried out in batch culture of single strain and mixed culture of sulfur oxidizing bacteria. The pure cultures of Thiobacillus thiooxidans and Thiobacillus ferrooxidans utilized inorganic sulfur content of Malaysian coal. The chemolithotroph bacteria were able to grow on coal and metabolize the coal's sulfur content. The batch cultures of coal with 3-5 perce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 79 24 شماره
صفحات -
تاریخ انتشار 2013